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Remarks on the Relation between Microscopic and Macroscopic Crystal Optics 

BY J. VAN LAAR*, H.J .  ENDEMAN t AND J. M. BIJVOET~ 

Laboratorium voor Kristalchemie der Rijks-Universiteit, Utrecht, The Netherlands 
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The microscopic equations for the polarization caused by a travelling light wave in an infinite crystal are 
brought into a form that is analogous to that of macroscopic optics. The role of the 'incident' field 
term in the elementary theory and that of a magnetic contribution to the optical rotatory power are 
discussed. 

1. Introduction 

Calculation of the rotatory power of NaC103 and 
NaBrO3 crystals - performed in view of their unex- 
pected relative behaviour - has previously been re- 
ported (Beurskens-Kerssen, Kroon, Endeman, van 
Laar & Bijvoet, 1963). Our calculations were based 
on Born's classical coupled oscillator model and we 
used the rapidly converging expressions for the dipole 
interaction in a crystal obtained by Ewald by means 
of his 0 transformation of lattice sums (Ewald, 1916a, 
1921). 

Its first presentation (Bijvoet, 1960) at the meeting 
of the I.U.Cr. in Cambridge was given in terms of the 
elementary scheme (§ 5) which includes an incident 
field term. The misuse of the latter conception has been 
thoroughly discussed by Ewald (1916a, b) in his monu- 
mental studies on the light propagation in an infinite 
as well as in a 'half '  crystal. This misuse was kindly 
brought to our attention by Prof. Ewald after the sec- 
tion meeting. Ewald's remark induced the present com- 
parison of exact and elementary equations for the crys- 
tal polarization; furthermore the microscopic equa- 
tions for the polarization of the different sublattices 
[equation (7)] have been shaped into one equation (17), 
which is analogous to that of macroscopic optics. 

Especially to the oldest of the present authors this 
contribution to the volume dedicated to Prof. Ewald 
offers the opportunity of expressing his profound ad- 
miration for the originality and charm of both Ewald's 
work and person. 

2. General outline of calculations 

We shall choose a rectangular coordinate system in the 
crystal with axis (ul, u2, u3), the origin being situated at 
the corner of a unit cell. With rn [(rn)l,(rn)2,(rn)3] we 
denote the coordinates of an atom in this special unit 
cell. There are n atoms per unit cell, so h = 1 . . .  n .  r t 
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stands for the vector to a lattice point and r~ for the 
vector to atom number h in the unit cell at r~, i.e. 
r~,=r Z +rh. With a we denote an arbitrary unit-cell di- 
mension and with V the unit cell volume. 

Further, the following notation will be used for the 
quantities of the electromagnetic field: E(r) and H(r) 
electric and magnetic field strength at point r; Z(r) 
Herz vector; p~, dipole moment of atom r~,; k wave vec- 
tor; n index of refraction; co circular frequency; 2 and 
20 wavelength in the medium and vacuum wavelength 
respectively and c the velocity of electromagnetic waves 
in vacuum. Tensors will be denoted with A letters. 

We consider the valence electrons to be quasi-elas- 
tically bound to their equilibrium position, thus acting 
as harmonically oscillating dipoles under the influence 
of an electromagnetic field. We assume these dipoles 
to be located at the centres of the atoms. 

To eliminate the complications caused by boundary 
conditions, we follow the method of Ewald (1916a) in 
which an infinite crystal is considered. Consequently 
there is no incident beam of light. 

An electromagnetic wave field will exist in such a 
crystal if it satisfies the condition that the vibration 
of each dipole is just maintained by the field that is 
brought about by all the others. This condition can 
be fulfilled by a plane travelling electromagnetic wave 
if for a given angular frequency oo the wavelength 2 
is chosen properly. The equation of motion for the 
harmonic vibrations of valence electron (l,h) reads: 

(-Moo2+iflo~+an)u~,=e X'  Ehl;(r~), (la) 
l',h" 

where urn is the deviation of the electron from its equi- 
librium position, M and e its mass and charge; an and 
fl are constants and E~,;(r) denotes the electric field at 
r due to dipole (l',h'). The prime in the summation 
means that dipole (l, h) itself has to be omitted. 

If co is not too close to one of the resonance fre- 
quencies [(~n)~/M] ÷, the damping term with fl can be 
neglected" with t z , Ph : eUh one gets: 

ah - Moo 2 
Eh,(rh) • (lb) e2 P~,-- YhP~ = Z '  l' l 

l',h" 

E~,(r) will be proportional to p]," and moreover only 
dependent on the distance between point r and atom 
r'h': 
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" " "  , '  
a(r--rh,)p n, . (2) 

Substitution of (2) into (lb) yields: 

7np t-- E '  t v v a(rh--rh,)Ph, . (3) 
l',h" 

This infinite system of homogeneous equations in 
pt can be reduced to a system of n equations owing 
to the periodicity of the crystal. For this purpose we 
assume a solution for p~, of the form: 

p~ =0pn e x p ( -  iogt + i k .  r t ) .  (4) 

Substitution of (4) into (3) results in" 

7n0pn= Z 0pn,[ X' a(rth--r~',) e x p { - i k .  (rth-- dh',)}] (5) 
h '  1' 

and in this equation the sum between square brackets 
is evidently independent of the special cell chosen in (3). 

Hence we can define: 

X' a(rth- r~') exp{ - i k .  (r t -  r~',)} 
r = A(rn-rn , )  = Ann' (6). 

Putting (6) into (5) leads to" 
7 n ° p n =  Z Ann,Opn , (7) 

h" 

independent of l. Therefore a solution of the infinite 
system (3) can indeed be obtained by combining (4) 
with the solution of the homogeneous system of n equa- 
tions (7). 

Consequently the problem of determining the pos- 
sible electromagnetic field is solved, in principle, after 
the calculation of the interaction coefficients Ann,, and 
substituting them in the system (7). As will appear in 
the following, these coefficients Ann,, contain k and 
so k (and n) can be found from the condition that the 
determinant of (7) must be zero and then the solution 
of (7) yields the vectors 0pn and hence the electro- 
magnetic field in the crystal. 

3. T h e  e x p l i c i t  f o r m  o f  the  coe f f i c i en t s  Ahh, 

We need for the subsequent discussion a brief outline 
of the calculation of the interaction coefficients accord- 
ing to Born's (1933) method. 

A linear formula of the form (2) for the contribution 
of each dipole (~',) will hold for every field quantity F(r): 

F/h',(r) = b ( r -  e" l' rh.)p h, 

which yields after substitution of (4) and summation 
over l ' :  

Fn,(r) = OFh,(r) e x p ( -  icot + i k .  r) = Z F~(r) 
1" 

=0pn, e x p ( - i c o t + i k ,  r ) .  [ Z' b ( r - r ~ )  
1' 

e x p { - i k .  ( r - r ~ ) } ] .  (8) 

The sum between square brackets has the lattice period. 
For the case that F is the Herz vector, the contribu- 

tion of the dipole (~',) is given by 

exp{ioglr-r~,l/c} . 
Z~',(r) = p~; Ir-r~',l ' 

i.e. b is a scalar function. Hence formula (8) for the 
contribution of sublattice h' becomes: 

Zh,(r) =0pn, exp [ -  iogt + i k .  r]s(r) (9) 

in which s(r) representing the lattice sum in (8) is a 
scalar function with the lattice period. Hence it can 
be expanded in a Fourier series. The result is: 

s(r)= 4zr --~- 2: exp(iqm, r)/([qm+kl2-k2/n2), (10) 
m 

in which qm are the lattice points in the reciprocal lat- 
tice and n=k/ko (see e.g. Ewald, 1916a, b; Born, 1933). 

This formula can be derived by making use of the 
fact that Z~ and hence Zh,, obeys a wave equation" 

1 OzZn, 
AZh, --0 

C 2 8 t  2 

holding for every r except for the points r~, in which 
Zn, is singular. 

Except for m = 0  the factors (Iqm+klE-kE/n2) -1 can 
be expanded in a power series of the vector components 

kj/lqml, as 2~r/2=lkl~l/a<~lqml. 

The Fourier series (10) is only conditionally convergent. 
By means of Ewald's 0 transformation it can be con- 
verted into the sum of two rapidly converging series, 
one in reciprocal and one in normal space. [This means 
the implicit introduction of a special summation se- 
quence in (10)]. 

The terms in the resulting series can be expanded 
in a power series of k .  a as was the case in (10). From 
the series for s Zn,(r) is obtained by substitution into 
(9) and the electric field En,(r) due to sublattice h' is 
then calculated from the relation 

E = rot rotZ = graddiv Z -  AZ 
or, with the aid of the wave equation for Zn,: 

En,(r) = graddiv Zh,(r)-b(k2/n2)Zh,(r). (11) 
Now Ahh" is calculated from E~,: equation (8) yields 
for the case of E(r): 

En,(r) =0pn • e x p ( -  ia~t + i k .  r)[ Z a(r - r~;)  
l" 

e x p { - i k .  (r-r~',)}]. 
With the aid of definition (6) for ,a, hn,, one gets im- 
mediately for h ~ h': 

E~,(rh) = An~,°p~ • e x p ( -  icot + i k .  rn). 
For h = h' the term due to dipole r °, which is singular 
at r~,, has to be subtracted. 

The result is for h ~ h' up to first order in k .  a" 

4zr ~ t~j-n2Sij ~ ,  (qm)l(qm)~ 
Re(Ann,)~j = ~ [ n-E__ i m IqM 2 

e x p (  Iqml2]cos(qm~-~/ . r~,)} 

OIJl[hh't F(S 821rOl  ' 12"~ 
+ S 3(r°~;)~ (r°~")J-" .-0rl2 

l' Ir°ff, I 5 , ~ ,  I hh ' l  1 

_ 4e 3 e2lrO~,,12)} + O~j ~ exp( - 
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Im(Ann')iJ= Snn kn [ 4-¢; Z' 

+ (~ez + i_~mlZ)(qm)i(qm),(qm)nlqm, 2 } 

exp ( -Iqml2] sin(qm oo 
\ - - - ~ 2 - - ]  " rhh ' )  

01" 0l' ~ .0l" 2 
_ Oi j  lhh,  -~- ~ 3(rhh ' ) i ( rhh ' )J - -  F(~,e21rOf,;i 2) 

l '  Ir~,~l 5 

4e3 e2lr0f,12)} (r~,)~] ( + &j ~ exp(-  , 12) 

in which rhh'Ol" = rn-r~',, S is a tensor with components 
&y_ kikj 

ik12 , e is an arbitrary positive number and 

2 oo 
F(-},x2) - - ~  { Ix exp(-  y2dy) } 

+ {21xl/1/~ + 41x13/(3 l/re) } exp( -  x 2) 

is an incomplete gamma function; the prime in the 
summation over m denotes that the term qm=0 has 
to be omitted. 

For h = h' the t e r m / ' - - 0  which becomes infinite has 
to be omitted from the summation. These explicit for- 
mula can also be found in the work of Hermann (1923). 

In the following we only need some general proper- 
ties of Ann,. It is seen from (12) that the zero order 
terms in k are real and the first order ones are imaginary 
and that the zero order terms contain n and hence k 

only in the constant ? ( I -  n2S)/(n 2- 1). Furthermore 

it is seen from (12) that: 

Ann' = ,a,n n' (13a) 
A h h "  = An* h (13b)  

Ann,(k)-- An*w(-- k). (I 3c) 

4. Comparison of microscopic 
and macroscopic equations 

The linear relations (7) can easily be interpreted in terms 
of conventional optics. In order to do this, we introduce 
in (7) instead of Ann,, the tensors BAn', defined by 

Ann, = BAh" + YnSnn" + (4~z/V)(I - n2S)/(n 2- 1). (14) 

Now the system (7) becomes: 

~r Bnn,Opn,= _{(4~/V)(l_n2S)/(n 2_ 1)} Z 0pn,; (15) 
h" h" 

on account of one of the general properties of Ann,, 
mentioned above, the tensors BAn, contain k only in 
the imaginary part of first order in k. 

Now we reduce the system (15) to one vector equa- 
tion in Z" 0pn,. Consider the n x r/matrix consisting of 

h' 
the Bhn, tensors as elements. This matrix can also be 
written as a 3r/× 3r/matrix ~ with elements ~3n÷i,3h'+j 
--(Bnn,)lj. We introduce the inverse matrix c~ of 

and form n 3 x 3 tensors CAn, from ~ analogous to 
BAn,. The relation c£,.~= 1 than reads in 3 x 3 tensor 
notation: 

~F C h " n B h n "  = I (~n"h "  • (16) 
h 

Multiplication of both members of equation (15) by 
Cn,,n, summation over h" and h, and application of 
(16) yields: 

4~z ZOpn . . . .  Z Ch,,h(l--n2S) 
h" V h " , h  

(r/E-- 1)-1 ~F 0pn, . (17) 
h' 

With the aid of (13a, b) it can easily be shown that 
the tensor Z Cn,,n is hermitian if considered as a 3 x 3 

h",h 
matrix in its components (Endeman, 1965). 

We conclude that r/and Z 0pn,, can simply be found 
h' 

by solving the 3 x 3 system (17) instead of the complete 
3n x 3r/ system (15). Furthermore we remark that the 
average of any field quantity over a unit cell, [F(r)]av, 
is directly proportional to Z 0pn,. This can be derived 

h' 
immediately from relation (8), as the sum between 
square brackets in this formula has the lattice period, 
and so its average over the unit cell is a constant 
tensor T. 

Hence: 

X [Fn,(r)]av = T( Z 0pn,) exp( -  icot + ik.  r) 
h' h' 

if terms of higher than first order in k .  a are neglected 
in exp(ik, r). 

Now we consider a plane travelling electromagnetic 
wave in a medium characterized by its complex di- 
electric constant ~. We assume no absorption of light, 
so e is a hermitian matrix in its components. The macro- 
scopic Maxwell equations yield after elimination of the 
magnetic field vectors: 

D=nZ(I - S )E .  (18) 

We introduce in (18) the polarization per unit volume 
P instead of D by application of 

4 r c P = D - E .  (19) 
The result is: 

4nP={(n2-1)l-n2S}E 
or after inversion: 

E=4~z{I- n2S}(n 2 -  1)-aP (20) 

(19) yields with D = ~ E  and after substitution of (20): 

P={v.-1}{I-nzS}(nZ-1)-lP. (21) 
The foregoing equations also hold for the amplitudes 
of the wave vectors, giving e.g. for equation (20) 

OE=4n{I-n2S}(n 2-1)-l(op). (22) 

Now we see that (17) is just identical with relation 
(21) obtained by solving the macroscopic Maxwell 
equations for a medium with dielectric constant e, if 
we make the formal identifications: 
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1 
V ( Z °Ph') =°P  

h '  

4n 
Z Ch"h=e- -  1 . (23) 

V h " , h  

As is well known, the imaginary part of e in (21) 
yields optical activity. (For example in a cubic crystal, 
where e is a complex scalar, the solution of (21) con- 
sists of right and left handed circular polarized waves 
with different index of refraction.) According to (23) 
this part of e corresponds to the imaginary part of 

Z Ch,,~, which is linear in k as is the case for the 
h , h "  

imaginary part of BAh', owing to the general properties 
of Ann, and (14). This linear dependence of the optical 
activity is always found in phenomenological and ele- 
mentary microscopic theories*. 

As this is useful in further discussions we put the 
first equation of (23) into the right hand member of 
(15), which yields after application of (22): 

Z Bhh,0ph, = -- ° E .  (24) 
h'  

By means of (23) the quantities of the microscopic 
theory are related to the macroscopic field. This rela- 
tion was based only on formal grounds. A real proof 
of (23) can only be found in Ewald's extinction theorem 
(Ewald, 1916b) in which a half-infinite crystal is con- 
sidered, and it is shown that an electromagnetic wave 
incident on its surface will penetrate only about one 
unit cell in the crystal and beyond this distance will 
give rise to an electromagnetic wavefield of the same 
form as found for an infinite crystal. So the quantities 
of this field can indeed be related to the macroscopic 
field in vacuum. 

5. Comparison of exact  and elementary theory 

In elementary calculations on optical properties one 
can distinguish two parts: 

(a) The macroscopic Maxwell equations are com- 
bined with a 'material equation', i.e. in general some 
phenomenological relation between E and D and one 
between B and H, and travelling wave type solutions 
of this system are considered. 

As mentioned above an optical active medium is ob- 
tained if a relation D = eE is introduced with complex 
dielectric constant c. 

(b) The material equations are derived from atomic 
models of the medium. Hence in theories of this type 
the field quantities are averaged to eliminate fluctua- 
tions on atomic scale before the Maxwell equations are 
applied. The difference with the method of calculation 
as treated above can best be demonstrated in the deriva- 
tion of equation (17) and (21). In the consequent micro- 
scopic theory we get directly equation (17), which con- 

* The relation D=Re(e)E+igsAE, in which g is the 
gyration tensor can also be derived from (17) and (23). The 
calculations are trivial but lengthy. 

tains only microscopic quantities. In an elementary 
treatment equation (21) is first obtained (part (a) of 
the calculation), and afterwards the microscopic ex- 
pression for e [i.e. the second of equations (23)] must 
be put in to get equation (17). 

This elementary method has been frequently used 
for the case of liquids, but also for crystals (Rama- 
chandran, 1951a, b, 1952), although in this case there 
is no need for the averaging procedure before applica- 
tion of the Maxwell equations. Although the method 
is very unsatisfactory from a theoretical point of view, 
the results are in most cases identical with that of a 
consequent microscopic theory based on the same 
model (in the following denoted as 'exact' theory). To 
demonstrate this we consider briefly the calculation of 
the refractive index for a crystal according to an ele- 
mentary treatment based on the coupled oscillator 
model. 

For the calculation of the interaction between the 
polarizable units only neighbours within a sphere with 
radius R are individually taken into account; the in- 
fluence of the remainder of the crystal is represented 
by a Lorentz correction. This Lorentz correction to- 
gether with the external field E yields e.g.  in an iso- 
tropic medium a contribution ~ to the local micro- 
scopic field; this contribution amounts to 

~= E + (4n/3)P. (25) 

The field due to dipole p/;, inside the sphere, at r~, 
is linear in p~,: 

l t 1 __  l I t I t Eh, (rh) -- f(rh -- rn,)Ph, . (26) 

As long as R<~2 the retardation can be neglected 
in calculating f. The complete microscopic field at r~, 
becomes: 

E(r/) = ~ + Z '  f(r~,- "" r rn,)pj,, . (27) 
h ' , l '  

In the left hand member of (27) we substitute E(r~,)= 
7hP~,, i.e. (lb); in the right hand member p~,;=0ph 

l" exp( -  k o t +  i k .  rh,), i.e. (4) and for ~ a plane travelling 
wave: 

(r) = 0 ~ exp( -  icot + i k .  r) .  (28) 

This results in: 

X [Th,Jhh'- Fh~']°p~ ' = 0 ~ (29) 
h'  

with the abbreviation: 

I=nh,= Z '  f(rh--r~,') e x p { - i k .  (rh-r~',)}. (30) 
1' 

The solution of (29), combined with (25) and (28) 
yields °ph and hence P as a function of E, i.e. a material 
equation. 

An elementary calculation as sketched above is of 
course open to much criticism. First the vacuum wave 
does not penetrate into the crystal and hence it is not 
clear why the external field stands in equation (25). 
Secondly, the restriction to atoms within radius R 
in the calculation of the dipole field is not a good 
approximation in a crystal, as the dipole forces are 
decreasing very slowly with distance and consequently 
large fluctuations appear in the dipole field as a func- 
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tion of R. Hence it seems a better approach to take 
R and the crystal itself infinite. Of course the Lorentz 
correction has then to be omitted from (25). Then, 
however, the 'external field' E has no meaning and 
the retardation can no longer be neglected in the 
calculation of Fnn,. The remarkable fact is found, how- 
ever, that maintaining the external field and neglecting 
the retardation in the infinite crystal leads to a result 
that is in most cases identical with that of the correct 
microscopic theory. 

This can best be shown by considering that the un- 
retarded field E~', of dipole p~; is calculated from a 
Herz vector 

Zlh,(r v- v-, -- rh,)= ph,/ir-- r#, I (31) 

with the relations: 
Eth',(r) = graddiv Z~,(r), (32a) 

AZ~', = 0 ,  (32b) 

which are the unretarded equivalent of equation (11) 
and the wave equation respectively. Of course (32) also 
holds for the field of the whole sublattice h': 

Zn,- 2; Z~, .  
l '  

After introduction of °pn, by means of (4), we derive 
the equivalent of formula (9): 

Z~,(r) = 0pn, exp(-icot + i k .  r)s'(r) (33) 

with s' having the lattice period. 
Following Born's method, we find for s' the Fourier 

series A - .  

s ' =  ~;*- 27 exp(iqm, r)/lqm-t- kl 2 , (34) 
v m 

in which only the term -kZ/n z in the denominator is 
lacking as compared with the formula (10) for a dipole 
lattice with retardation. After expansion in a power 
series of k/qm in first order approximation, this dif- 
ference only appears in the term qm=O which now 
becomes (4n/V)k  2 instead of (4n/V)k2n2/(n 2 - 1). In the 
application of the Ewald 0 transformation to (34) of 
course no new differences occur. En, is now calculated 
from 

E~, = graddiv Zn, (35) 

instead of from formula (11): 

En, = graddiv Zn, + (k2/n2)Zn • . 

The difference in the term qm=0 of the Fourier 
series leads to a zero order term - (4~ /V)S  in IZj~, 
instead of the term -(4zc/V)r/2 S (n 2 -  1) -I as found in 
the interaction coefficient Ann, for a retarded dipole 
field. 

The term (k2/n2)Zn • in (11) gave rise to the term 
(4rc/V)(n 2 - 1 )  -1 in Ann'. This term is lacking in Fnn, 
according to equation (35). 

Summarizing, we get the relation: 

Fnn,=Alzn , - (4rc /V) ( ( l -n2S) (n  2 - 1 ) - 1 } -  (4re/V)S . 

Substituting this formula in (29) and introducing Bnn, 
instead of Ann, (equation 14) yields as a result of the 
elementary theory: 

27 { B hn, - (4~z/ V ) S  }°pn , = - o F ,  
h' 

or with (25), in which the Lorentz correction term 
(4~z/3)P has to be omitted as the dipole summation 
has been extended over the whole crystal: 

X (Bnn,- (4~z/V)S}°pn ,= - ° E ,  (36) 
h' 

which is identical with formula (24) except for the term 
-(4~z/V)S. If we take k e.g. in the u3 direction, the 
terms with S in the components along Ua and u2 of 
vector equation (36) are zero. So in this case these 
become identical with that of (24), and omitting the 
retardation is just compensated by the 'external field'. 
The longitudinal component of (36) is not correct and 
hence the right form of the general macroscopic for- 
mula (21) is not found in this elementary theory. 

Assuming apriori Z (0pn,)3 = 0 makes the longitudinal 
h' 

components of (36) and (24) also identical. This as- 
sumption always holds for cubic crystals and generally 
for the principal directions of ~ if k is taken in such 
a direction. As this is usually made in calculations of 
the refractive index and rotatory power, the elementary 
theory gives the correct result for these quantities. 

A third difficulty in the elementary theory as sketched 
above is the problem of the so-called magnetic con- 
tribution to the optical rotatory power: an oscillating 
electric dipole in an electromagnetic wavefield repre- 
sents a magnetic dipole moment c-lp A H, which gives 
rise to a complex magnetic permeability in the coupled 
oscillator model, and this would result in a contribu- 
tion to the optical activity of the same order of mag- 
nitude as that caused by the complex ~. In the literature 
the opinion is found that this contribution has actually 
to be taken into account (e.g. Born, 1933, p.414). Of 
course this problem does not arise in the exact treat- 
ment, as no material equations occur at all. Moreover, 
it appears that in the elementary theory no magnetic 
contribution must be taken into account in the Born 
model as its equation(36) - the equivalent of the electri- 
cal material equation - is identical with the exact equa- 
tion (24). 
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